Supramolecular assembly of Hoechst-33258 with cucurbit[7]uril macrocycle.

نویسندگان

  • Nilotpal Barooah
  • Jyotirmayee Mohanty
  • Haridas Pal
  • Achikanath C Bhasikuttan
چکیده

Molecular assemblies of potential guest molecules through non-covalent host-guest interactions have found immense use in many applied areas. In this study supramolecular interaction of a biologically important dye Hoechst-33258 (H33258) has been investigated in aqueous solutions at different pHs, in the presence of a macrocyclic host, namely, cucurbit[7]uril (CB7). The pH dependent emission behaviour of H33258 is inherently connected with its protolytic equilibria which allow the dye in different geometrical conformations. This pH dependent structural orientation is greatly affected by the complexation with CB7. The significant structural changes in the monocationic H33258 brought out by CB7 at pH 7 have been documented in the fluorescence emission and lifetime data, which are comparatively less affected in case of the dicationic form, which is prominent in dye solutions at pH 4.5. The strong ion-dipole interactions provided by the carbonyl portals of the CB7 host adequately stabilize the CB7-H33258 complex, both in 1:1 and 2:1 stoichiometries at both the pH conditions. The Job's plot method, fluorescence anisotropy, NMR measurements and geometry optimization calculations confirm the stoichiometric arrangement and are found to be tunable with the addition of metal ions. The non-covalently stabilized assembly brings out large enhancement in the fluorescence emission due to the unique structural orientation attained by H33258, which reduces the non-radiative relaxation pathways. Comparison of the spectral data of the dye at different pH conditions in the absence and presence of CB7 proposes a large upward pK(a) shift due to CB7 encapsulation, thus providing a handy tool to modulate the photophysical characteristics of the guest molecules.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A photoinduced pH jump applied to drug release from cucurbit[7]uril.

A proof-of-principle for the application of a photoinduced pH jump for delivery of the Hoechst 33258 drug by disassembly of its host-guest complex with cucurbit[7]uril is described.

متن کامل

The construction of rigid supramolecular polymers in water through the self-assembly of rod-like monomers and cucurbit[8]uril.

Two new types of supramolecular polymers have been constructed via the self-assembly of rigid rod-like monomers and cucurbit[8]uril (CB[8]) in water. These supramolecular polymers possessed rigid backbones and further aggregated into stick-like bunched fibres.

متن کامل

A theoretical analysis of a classic example of supramolecular catalysis.

Computational chemistry is used to study a 1,3-dipolar cycloaddition between an azide and an alkyne inside the macrocycle cucurbit[6]uril, in order to elucidate the catalytic function of a highly efficient supramolecular catalyst.

متن کامل

Cucurbituril-mediated supramolecular acid catalysis.

The rates of acid hydrolysis of N-benzoyl-cadaverine (1), mono-N-(tert-butoxy)carbonyl cadaverine (2), and benzaldoxime (3) with binding motifs for cucurbit[6]uril (1,2) and cucurbit[7]uril (1,3) were investigated in the absence and presence of these hosts. Significant rate enhancements (up to a factor of ca. 300 for the hydrolysis of 3) were observed. Competitive inhibition due to encapsulatio...

متن کامل

Cucurbit[8]uril templated supramolecular ring structure formation and protein assembly modulation.

The interplay of Phe-Gly-Gly (FGG)-tagged proteins and bivalent FGG-tagged penta(ethylene glycol) as guest molecules with cucurbit[8]uril (Q8) hosts is studied to modulate the supramolecular assembly process. Ring structure formation of the bivalent guest molecule with Q8 leads to enhanced binding properties and efficient inhibition of protein assemblies.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 13 28  شماره 

صفحات  -

تاریخ انتشار 2011